noise_test_bank_functions
Auxiliary functions for using with the demo notebook: NoisyModels.ipynb
- QQuantLib.qpu.noise_test_bank_functions.create_arrays(price_problem)
This function creates the mandatory arrays for configuring an option price estimation problem for notebook NoisyModels.ipynb
- Parameters:
price_problem (dict) – Python dictionary with a complete dictionary for configuring the arrays for a option price estimation problem
- Returns:
domain (numpy array) – numpy array with the domain for the price estimation problem
norm_pay_off (array) – numpy array with the normalised payoff
norm_p_x (numpy array) – numpy array with the normalised probability density
pay_off_normalisation (float) – normalization constant for the payoff
p_x_normalisation (float) – normalization constant for the probability density
- QQuantLib.qpu.noise_test_bank_functions.first_step(epsilon, ratio, gamma)
Configuration of the first step for a RQAE algorithm. This is an auxiliary function for notebook NoisyModels.ipynb
- Parameters:
epsilon (float) – epsilon for RQAE
ratio (float) – ratio (q) for RQAE
gamma (float) – gamma for RQAE
- Returns:
shift (float) – shift for first step of RQAE
n_i (int) – number of shots for first step of RQAE
gamma_i (float) – failure probability for first step of RQAE
theoretical_epsilon (float) – theoretical epsilon for first step of RQAE