QQuantLib.AE

ae_class

This module contains a general class for solving AE problems using the algorithm classes from QQuantLib.AE library package Authors: Alberto Pedro Manzano Herrero & Gonzalo Ferro

class tnbs.BTC_02_AE.QQuantLib.AE.ae_class.AE(oracle=None, target=None, index=None, ae_type=None, **kwargs)

Bases: object

Class for creating and solving an AE problem

Parameters:
  • oracle (QLM gate) – QLM gate with the Oracle for implementing the Grover operator

  • target (list of ints) – python list with the target for the amplitude estimation

  • index (list of ints) – qubits which mark the register to do the amplitude estimation

  • ae_type (string) – string with the desired AE algorithm: MLAE, CQPEAE, IQPEAE, IQAE, RQAE

  • kwars (dictionary) – dictionary that allows the configuration of the AE algorithm. The different configration keys of the different AE algorithms can be provided.

property ae_type

creating ae_type property

create_ae_solver()

Method for instantiate the AE algorithm class.

run()

Method for running an AE problem

ae_classical_qpe

This module contains the CQPEAE class. Given a quantum oracle operator, this class estimates the amplitude of a given target state using the classical QPE algorithm (with QFT). This module uses the QQuantLib.PE.classical_qpe one.

The following references were used:

Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000). Quantum amplitude amplification and estimation. AMS Contemporary Mathematics Series, 305. https://arxiv.org/abs/quant-ph/0005055v1

NEASQC deliverable: D5.1: Review of state-of-the-art for Pricing and Computation of VaR

Author: Gonzalo Ferro Costas & Alberto Manzano Herrero

class tnbs.BTC_02_AE.QQuantLib.AE.ae_classical_qpe.CQPEAE(oracle: qat.lang.AQASM.QRoutine, target: list, index: list, **kwargs)

Bases: object

Class for doing Amplitude Estimation (AE) using classical Quantum Amplitude Estimation (with QFT) algorithm

Parameters:
  • oracle (QLM gate) – QLM gate with the Oracle for implementing the Grover operator

  • target (list of ints) – python list with the target for the amplitude estimation

  • index (list of ints) – qubits which mark the register to do the amplitude estimation

  • kwars (dictionary) –

    dictionary that allows the configuration of the CQPEAE algorithm: Implemented keys:

    qpuQLM solver

    solver for simulating the resulting circuits

    shotsint

    number of measurements

    mcz_qlmbool

    for using or not QLM implementation of the multi controlled Z gate

property index

creating index property

property oracle

creating oracle property

run()

run method for the class.

Returns:

the estimation of a

Return type:

result

Notes

\[a = \cos^2(\theta)\]

Where \(\theta\) is:

\[\mathcal{Q}|\Psi\rangle = e^{2i\theta}|\Psi\rangle\]

And \(\mathcal{Q}\) the Grover Operator

property target

creating target property

ae_iterative_quantum_pe

This module contains necessary functions and classes to implement amplitude estimation algorithm using Iterative Quantum Phase Estimation (IQPE). The implementation is based on following paper:

Dobšíček, Miroslav and Johansson, Göran and Shumeiko, Vitaly and Wendin, Göran*. Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: A two-qubit benchmark. Physical Review A 3(76), 2007. https://arxiv.org/abs/quant-ph/0610214

Author: Gonzalo Ferro Costas & Alberto Manzano Herrero

class tnbs.BTC_02_AE.QQuantLib.AE.ae_iterative_quantum_pe.IQPEAE(oracle: qat.lang.AQASM.QRoutine, target: list, index: list, **kwargs)

Bases: object

Class for using Iterative Quantum Phase Estimation (IQPE) class for doing Amplitude Estimation (AE)

Parameters:
  • oracle (QLM gate) – QLM gate with the Oracle for implementing the Grover operator

  • target (list of ints) – python list with the target for the amplitude estimation

  • index (list of ints) – qubits which mark the register to do the amplitude estimation

  • kwars (dictionary) –

    dictionary that allows the configuration of the IQPEAE algorithm: Implemented keys:

    qpuQLM solver

    solver for simulating the resulting circutis

    shotsint

    number of measurements

    mcz_qlmbool

    for using or not QLM implementation of the multi controlled Z gate

property index

creating index property

property oracle

creating oracle property

run()

run method for the class.

Returns:

the estimation of a

Return type:

result

Notes

\[a = \cos^2(\theta)\]

Where \(\theta\) is:

\[\mathcal{Q}|\Psi\rangle = e^{2i\theta}|\Psi\rangle\]

And \(\mathcal{Q}\) the Grover Operator

property target

creating target property

iterative_quantum_ae

This module contains necessary functions and classes to implement Iterative Quantum Amplitude Estimation based on the paper:

Grinko, D., Gacon, J., Zoufal, C. et al. Iterative Quantum Amplitude Estimation npj Quantum Inf 7, 52 (2021). https://doi.org/10.1038/s41534-021-00379-1

Author: Gonzalo Ferro Costas & Alberto Manzano Herrero

class tnbs.BTC_02_AE.QQuantLib.AE.iterative_quantum_ae.IQAE(oracle: qat.lang.AQASM.QRoutine, target: list, index: list, **kwargs)

Bases: object

Class for Iterative Quantum Amplitude Estimation (IQAE) algorithm

Parameters:
  • oracle (QLM gate) – QLM gate with the Oracle for implementing the Grover operator

  • target (list of ints) – python list with the target for the amplitude estimation

  • index (list of ints) – qubits which mark the register to do the amplitude estimation

  • kwars (dictionary) –

    dictionary that allows the configuration of the IQAE algorithm: Implemented keys:

    qpuQLM solver

    solver for simulating the resulting circuits

    epsilonfloat

    precision

    alphafloat

    accuracy

    shotsint

    number of measurements on each iteration

    mcz_qlmbool

    for using or not QLM implementation of the multi controlled Z gate

static chebysev_bound(n_samples: int, gamma: float)

Computes the length of the confidence interval for a given number of samples n_samples and an accuracy gamma:

\[\epsilon = \dfrac{1}{\sqrt{2N}}\log\left(\dfrac{2}{\gamma} \ \right)\]
Parameters:
  • n_samples (int) – number of samples

  • gamma (float) – accuracy

Returns:

length of the confidence interval

Return type:

float

static compute_info(epsilon: float = 0.01, shots: int = 100, alpha: float = 0.05)

This function computes theoretical values of the IQAE algorithm.

Parameters:
  • epsilon (float) – precision

  • alpha (float) – accuracy

  • shots (int) – number of measurements on each iteration

Returns:

info – python dictionary with the computed information

Return type:

dict

static display_information(epsilon: float = 0.01, shots: int = 100, alpha: float = 0.05)

This function displays information of the properties of the method for a given set of parameters

Parameters:
  • epsilon (float) – precision

  • alpha (float) – accuracy

  • shots (int) – number of measurements on each iteration

static find_next_k(k: int, theta_lower: float, theta_upper: float, flag: bool, ratio: float = 2)

This is an implementation of Algorithm 2 from the IQAE paper. This function computes the next suitable k.

Parameters:
  • k (int) – number of times to apply the grover operator to the quantum circuit

  • theta_lower (float) – lower bound for the estimation of the angle

  • theta_upper (float) – upper bound for the estimation of the angle

  • flag (bool) – flag to keep track of weather we are in the upper or lower half pane

  • ratio (float) – ratio of amplifications between consecutive iterations

Returns:

  • k (int) – number of times to apply the grover operator to the quantum circuit

  • flag (bool) – flag to keep track of weather we are in the upper or lower half pane

property index

creating index property

static invert_sector(a_min: float, a_max: float, flag: bool = True)

This function inverts the expression:

\[a = \dfrac{1-\cos(\theta)}{2}\]

for a pair of bounds (a_min,a_max). The result belongs to the domain (0,2pi)

Parameters:
  • a_min (float) – lower bound

  • a_max (float) – upper bound

  • flag (bool) – flag to keep track of weather we are in the upper or lower half pane

Returns:

  • theta_min (float) – lower bound for the associated angle

  • theta_max (float) – upper bound for the associated angle

iqae(epsilon: float = 0.01, shots: int = 100, alpha: float = 0.05)

This function implements Algorithm 1 from the IQAE paper. The result is an estimation of the desired probability with precision at least epsilon and accuracy at least alpha.

Parameters:
  • epsilon (float) – precision

  • alpha (float) – accuracy

  • shots (int) – number of measurements on each iteration

Returns:

  • a_l (float) – lower bound for the probability to be estimated

  • a_u (float) – upper bound for the probability to be estimated

property oracle

creating oracle property

quantum_step(k)

Create the quantum routine needed for the iqae step

Parameters:

k (int) – number of Grover operator applications

Returns:

routine – qlm routine for the iqae step

Return type:

qlm routine

run()

run method for the class.

Returns:

amplitude estimation parameter

Return type:

self.ae

property target

creating target property

maximum_likelihood_ae

This module contains necessary functions and classes to implement Maximum Likelihood Amplitude Estimation based on the paper:

Suzuki, Y., Uno, S., Raymond, R., Tanaka, T., Onodera, T., & Yamamoto, N. Amplitude estimation without phase estimation Quantum Information Processing, 19(2), 2020 arXiv: quant-ph/1904.10246v2

Author: Gonzalo Ferro Costas & Alberto Manzano Herrero

class tnbs.BTC_02_AE.QQuantLib.AE.maximum_likelihood_ae.MLAE(oracle: qat.lang.AQASM.QRoutine, target: list, index: list, **kwargs)

Bases: object

Class for using Maximum Likelihood Quantum Amplitude Estimation (MLAE) algorithm

Parameters:
  • oracle (QLM gate) – QLM gate with the Oracle for implementing the Grover operator: init_q_prog and q_gate will be interpreted as None

  • target (list of ints) – python list with the target for the amplitude estimation

  • index (list of ints) – qubits which mark the register to do the amplitude estimation

  • kwars (dictionary) –

    dictionary that allows the configuration of the MLAE algorithm: Implemented keys:

    qpuQLM solver

    solver for simulating the resulting circuits

    schedulelist of two lists

    the schedule for the algorithm

    optimizer :

    an optimizer with just one possible entry

    deltafloat

    tolerance to avoid division by zero warnings

    nsint

    number of grid points for brute scipy optimizer

    mcz_qlmbool

    for using or not QLM implementation of the multi controlled Z gate

static cost_function(angle: float, m_k: list, n_k: list, h_k: list) float

This method calculates the -Likelihood of angle theta for a given schedule m_k,n_k

Notes

\[L(\theta,\mathbf{h}) = -\sum_{k = 0}^M\log{l_k(\theta|h_k)}\]
Parameters:
  • angle (float) – Angle (radians) for calculating the probability of measure a positive event.

  • m_k (list of ints) – number of times the grover operator was applied.

  • n_k (list of ints) – number of total events measured for the specific m_k

  • h_k (list of ints) – number of positive events measured for each m_k

Returns:

cost – the aggregation of the individual likelihoods

Return type:

float

property index

creating index property

static likelihood(theta: float, m_k: int, n_k: int, h_k: int) float

Calculates Likelihood from Suzuki paper. For h_k positive events of n_k total events, this function calculates the probability of this taking into account that the probability of a positive event is given by theta and by m_k The idea is use this function to minimize it for this reason it gives minus Likelihood

Notes

\[l_k(\theta|h_k) = \sin^2\left((2m_k+1)\theta\right)^{h_k} \ \cos^2 \left((2m_k+1)\theta\right)^{n_k-h_k}\]
Parameters:
  • theta (float) – Angle (radians) for calculating the probability of measure a positive event.

  • m_k (int) – number of times the grover operator was applied.

  • n_k (int) – number of total events measured for the specific m_k

  • h_k (int) – number of positive events measured for each m_k

Returns:

Gives the Likelihood p(h_k with m_k amplifications|theta)

Return type:

float

static log_likelihood(theta: float, m_k: int, n_k: int, h_k: int) float

Calculates log of the likelihood from Suzuki paper.

Notes

\[\log{l_k(\theta|h_k)} = 2h_k\log\big[\sin\left((2m_k+1) \ \theta\right)\big] +2(n_k-h_k)\log\big[\cos\left((2m_k+1) \ \theta\right)\big]\]
Parameters:
  • theta (float) – Angle (radians) for calculating the probability of measure a positive event.

  • m_k (int) – number of times the grover operator was applied.

  • n_k (int) – number of total events measured for the specific m_k

  • h_k (int) – number of positive events measured for each m_k

Returns:

Gives the log Likelihood p(h_k with m_k amplifications|theta)

Return type:

float

mlae(schedule, optimizer)

This method executes a complete Maximum Likelihood Algorithm, including executing schedule, defining the correspondent cost function and optimizing it.

Parameters:
  • schedule (list of two lists) – the schedule for the algorithm

  • optimizer (optimization routine.) – the optimizer should receive a function of one variable the angle to be optimized. Using lambda functions is the recommended way.

Returns:

  • result (optimizer results) – the type of the result is the type of the result of the optimizer

  • h_k (list) – list with number of positive outcomes from quantum circuit for each pair element of the input schedule

  • cost_function_partial (function) – partial cost function with the m_k, n_k and h_k fixed to the obtained values of the different experiments.

property oracle

creating oracle property

run() float

run method for the class.

Returns:

list with the estimation of a

Return type:

result

Notes

\[a^* = \sin^2(\theta^*) \; where \; \theta^* = \arg \ \min_{\theta} L(\theta,\mathbf{h})\]
run_schedule(schedule)

This method execute the run_step method for each pair of values of a given schedule.

Parameters:

schedule (list of two lists) – the schedule for the algorithm

Returns:

h_k – list with the h_k result of each pair of the input schedule

Return type:

list

run_step(m_k: int, n_k: int) int

This method executes on step of the MLAE algorithm

Parameters:
  • m_k (int) – number of times to apply the self.q_gate to the quantum circuit

  • n_k (int) – number of shots

Returns:

  • h_k (int) – number of positive events

  • routine (QLM Routine object)

property schedule

creating schedule property

set_exponential_schedule(n_t: int, n_s: int)

Creates a scheduler of exponential increasing of m_ks.

Parameters:
  • n_t (int) – number of maximum applications of the grover operator

  • n_s (int) – number of shots for each m_k grover applications

set_linear_schedule(n_t: int, n_s: int)

Creates a scheduler of linear increasing of m_ks.

Parameters:
  • n_t (int) – number of maximum applications of the grover operator

  • n_s (int) – number of shots for each m_k grover applications

property target

creating target property

montecarlo_ae

This module contains necessary functions and classes to implement a MonterCarlo Amplitude Estimation. In this case not amplification is used. The probability of the target stat of the oracle is measured.

Author: Gonzalo Ferro Costas & Alberto Manzano Herrero

class tnbs.BTC_02_AE.QQuantLib.AE.montecarlo_ae.MCAE(oracle: qat.lang.AQASM.QRoutine, target: list, index: list, **kwargs)

Bases: object

Class for MonteCarlo Amplitude Estimation (MCAE).

Parameters:
  • oracle (QLM gate) – QLM gate with the Oracle for implementing the Grover operator

  • target (list of ints) – python list with the target for the amplitude estimation

  • index (list of ints) – qubits which mark the register to do the amplitude estimation

  • kwars (dictionary) –

    dictionary that allows the configuration of the IQAE algorithm: Implemented keys:

    qpuQLM solver

    solver for simulating the resulting circuits

    shotsint

    number of measurements

    mcz_qlmbool

    for using or not QLM implementation of the multi controlled Z gate

property index

creating index property

property oracle

creating oracle property

run()

run method for the class.

Returns:

amplitude estimation parameter

Return type:

self.ae

property target

creating target property

real_quantum_ae

This module contains necessary functions and classes to implement Real Quantum Amplitude Estimation based on the paper:

Manzano, A., Musso, D., Leitao, A. et al. Real Quantum Amplitude Estimation Preprint

Author: Gonzalo Ferro Costas & Alberto Manzano Herrero

class tnbs.BTC_02_AE.QQuantLib.AE.real_quantum_ae.RQAE(oracle: qat.lang.AQASM.QRoutine, target: list, index: list, **kwargs)

Bases: object

Class for Real Quantum Amplitude Estimation (RQAE) algorithm

Parameters:
  • oracle (QLM gate) – QLM gate with the Oracle for implementing the Grover operator

  • target (list of ints) – python list with the target for the amplitude estimation

  • index (list of ints) – qubits which mark the register to do the amplitude estimation

  • kwars (dictionary) –

    dictionary that allows the configuration of the IQAE algorithm: Implemented keys:

    qpuQLM solver

    solver for simulating the resulting circuits

    qint

    amplification ratio

    epsilonint

    precision

    gammafloat

    accuracy

    mcz_qlmbool

    for using or not QLM implementation of the multi controlled Z gate

static chebysev_bound(n_samples: int, gamma: float)

Computes the length of the confidence interval for a given number of samples n_samples and an accuracy gamma.

Parameters:
  • n_samples (int) – number of samples

  • gamma (float) – accuracy

Return type:

length of the confidence interval

static compute_info(ratio: float = 2, epsilon: float = 0.01, gamma: float = 0.05, **kwargs)

This function computes theoretical values of the IQAE algorithm.

Parameters:
  • ratio (float) – amplification ratio/policy

  • epsilon (float) – precision

  • gamma (float) – accuracy

Returns:

info – python dictionary with the computed information

Return type:

dict

static display_information(ratio: float = 2, epsilon: float = 0.01, gamma: float = 0.05, **kwargs)

This function displays information of the properties of the method for a given set of parameters

Parameters:
  • ratio (float) – amplification ratio/policy

  • epsilon (float) – precision

  • gamma (float) – accuracy

first_step(shift: float, shots: int, gamma: float)

This function implements the first step of the RQAE paper. The result is a first estimation of the desired amplitude.

Parameters:
  • shift (float) – shift for the first iteration

  • shots (int) – number of measurements

  • gamma (float) – accuracy

Returns:

  • amplitude_min (float) – lower bound for the amplitude to be estimated

  • amplitude_max (float) – upper bound for the amplitude to be estimated

property index

creating index property

property oracle

creating oracle property

rqae(ratio: float = 2, epsilon: float = 0.01, gamma: float = 0.05)

This function implements the first step of the RQAE paper. The result is an estimation of the desired amplitude with precision epsilon and accuracy gamma.

Parameters:
  • ratio (int) – amplification ratio

  • epsilon (int) – precision

  • gamma (float) – accuracy

Returns:

  • amplitude_min (float) – lower bound for the amplitude to be estimated

  • amplitude_max (float) – upper bound for the amplitude to be estimated

run()

run method for the class.

Returns:

amplitude estimation parameter

Return type:

self.ae

run_step(shift: float, shots: int, gamma: float, k: int)

This function implements a step of the RQAE paper. The result is a refined estimation of the desired amplitude.

Parameters:
  • shift (float) – shift for the first iteration

  • shots (int) – number of measurements

  • gamma (float) – accuracy

  • k (int) – number of amplifications

Returns:

  • amplitude_min (float) – lower bound for the amplitude to be estimated

  • amplitude_max (float) – upper bound for the amplitude to be estimated

property shifted_oracle

creating shifted_oracle property

property target

creating target property