QQuantLib.AE
ae_class
This module contains a general class for solving AE problems using the algorithm classes from QQuantLib.AE library package Authors: Alberto Pedro Manzano Herrero & Gonzalo Ferro
- class tnbs.BTC_02_AE.QQuantLib.AE.ae_class.AE(oracle=None, target=None, index=None, ae_type=None, **kwargs)
Bases:
object
Class for creating and solving an AE problem
- Parameters:
oracle (QLM gate) – QLM gate with the Oracle for implementing the Grover operator
target (list of ints) – python list with the target for the amplitude estimation
index (list of ints) – qubits which mark the register to do the amplitude estimation
ae_type (string) – string with the desired AE algorithm: MLAE, CQPEAE, IQPEAE, IQAE, RQAE
kwars (dictionary) – dictionary that allows the configuration of the AE algorithm. The different configration keys of the different AE algorithms can be provided.
- property ae_type
creating ae_type property
- create_ae_solver()
Method for instantiate the AE algorithm class.
- run()
Method for running an AE problem
ae_classical_qpe
This module contains the CQPEAE class. Given a quantum oracle operator, this class estimates the amplitude of a given target state using the classical QPE algorithm (with QFT). This module uses the QQuantLib.PE.classical_qpe one.
The following references were used:
Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000). Quantum amplitude amplification and estimation. AMS Contemporary Mathematics Series, 305. https://arxiv.org/abs/quant-ph/0005055v1
NEASQC deliverable: D5.1: Review of state-of-the-art for Pricing and Computation of VaR
Author: Gonzalo Ferro Costas & Alberto Manzano Herrero
- class tnbs.BTC_02_AE.QQuantLib.AE.ae_classical_qpe.CQPEAE(oracle: qat.lang.AQASM.QRoutine, target: list, index: list, **kwargs)
Bases:
object
Class for doing Amplitude Estimation (AE) using classical Quantum Amplitude Estimation (with QFT) algorithm
- Parameters:
oracle (QLM gate) – QLM gate with the Oracle for implementing the Grover operator
target (list of ints) – python list with the target for the amplitude estimation
index (list of ints) – qubits which mark the register to do the amplitude estimation
kwars (dictionary) –
dictionary that allows the configuration of the CQPEAE algorithm: Implemented keys:
- qpuQLM solver
solver for simulating the resulting circuits
- shotsint
number of measurements
- mcz_qlmbool
for using or not QLM implementation of the multi controlled Z gate
- property index
creating index property
- property oracle
creating oracle property
- run()
run method for the class.
- Returns:
the estimation of a
- Return type:
result
Notes
\[a = \cos^2(\theta)\]Where \(\theta\) is:
\[\mathcal{Q}|\Psi\rangle = e^{2i\theta}|\Psi\rangle\]And \(\mathcal{Q}\) the Grover Operator
- property target
creating target property
ae_iterative_quantum_pe
This module contains necessary functions and classes to implement amplitude estimation algorithm using Iterative Quantum Phase Estimation (IQPE). The implementation is based on following paper:
Dobšíček, Miroslav and Johansson, Göran and Shumeiko, Vitaly and Wendin, Göran*. Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: A two-qubit benchmark. Physical Review A 3(76), 2007. https://arxiv.org/abs/quant-ph/0610214
Author: Gonzalo Ferro Costas & Alberto Manzano Herrero
- class tnbs.BTC_02_AE.QQuantLib.AE.ae_iterative_quantum_pe.IQPEAE(oracle: qat.lang.AQASM.QRoutine, target: list, index: list, **kwargs)
Bases:
object
Class for using Iterative Quantum Phase Estimation (IQPE) class for doing Amplitude Estimation (AE)
- Parameters:
oracle (QLM gate) – QLM gate with the Oracle for implementing the Grover operator
target (list of ints) – python list with the target for the amplitude estimation
index (list of ints) – qubits which mark the register to do the amplitude estimation
kwars (dictionary) –
dictionary that allows the configuration of the IQPEAE algorithm: Implemented keys:
- qpuQLM solver
solver for simulating the resulting circutis
- shotsint
number of measurements
- mcz_qlmbool
for using or not QLM implementation of the multi controlled Z gate
- property index
creating index property
- property oracle
creating oracle property
- run()
run method for the class.
- Returns:
the estimation of a
- Return type:
result
Notes
\[a = \cos^2(\theta)\]Where \(\theta\) is:
\[\mathcal{Q}|\Psi\rangle = e^{2i\theta}|\Psi\rangle\]And \(\mathcal{Q}\) the Grover Operator
- property target
creating target property
iterative_quantum_ae
This module contains necessary functions and classes to implement Iterative Quantum Amplitude Estimation based on the paper:
Grinko, D., Gacon, J., Zoufal, C. et al. Iterative Quantum Amplitude Estimation npj Quantum Inf 7, 52 (2021). https://doi.org/10.1038/s41534-021-00379-1
Author: Gonzalo Ferro Costas & Alberto Manzano Herrero
- class tnbs.BTC_02_AE.QQuantLib.AE.iterative_quantum_ae.IQAE(oracle: qat.lang.AQASM.QRoutine, target: list, index: list, **kwargs)
Bases:
object
Class for Iterative Quantum Amplitude Estimation (IQAE) algorithm
- Parameters:
oracle (QLM gate) – QLM gate with the Oracle for implementing the Grover operator
target (list of ints) – python list with the target for the amplitude estimation
index (list of ints) – qubits which mark the register to do the amplitude estimation
kwars (dictionary) –
dictionary that allows the configuration of the IQAE algorithm: Implemented keys:
- qpuQLM solver
solver for simulating the resulting circuits
- epsilonfloat
precision
- alphafloat
accuracy
- shotsint
number of measurements on each iteration
- mcz_qlmbool
for using or not QLM implementation of the multi controlled Z gate
- static chebysev_bound(n_samples: int, gamma: float)
Computes the length of the confidence interval for a given number of samples n_samples and an accuracy gamma:
\[\epsilon = \dfrac{1}{\sqrt{2N}}\log\left(\dfrac{2}{\gamma} \ \right)\]- Parameters:
n_samples (int) – number of samples
gamma (float) – accuracy
- Returns:
length of the confidence interval
- Return type:
float
- static compute_info(epsilon: float = 0.01, shots: int = 100, alpha: float = 0.05)
This function computes theoretical values of the IQAE algorithm.
- Parameters:
epsilon (float) – precision
alpha (float) – accuracy
shots (int) – number of measurements on each iteration
- Returns:
info – python dictionary with the computed information
- Return type:
dict
- static display_information(epsilon: float = 0.01, shots: int = 100, alpha: float = 0.05)
This function displays information of the properties of the method for a given set of parameters
- Parameters:
epsilon (float) – precision
alpha (float) – accuracy
shots (int) – number of measurements on each iteration
- static find_next_k(k: int, theta_lower: float, theta_upper: float, flag: bool, ratio: float = 2)
This is an implementation of Algorithm 2 from the IQAE paper. This function computes the next suitable k.
- Parameters:
k (int) – number of times to apply the grover operator to the quantum circuit
theta_lower (float) – lower bound for the estimation of the angle
theta_upper (float) – upper bound for the estimation of the angle
flag (bool) – flag to keep track of weather we are in the upper or lower half pane
ratio (float) – ratio of amplifications between consecutive iterations
- Returns:
k (int) – number of times to apply the grover operator to the quantum circuit
flag (bool) – flag to keep track of weather we are in the upper or lower half pane
- property index
creating index property
- static invert_sector(a_min: float, a_max: float, flag: bool = True)
This function inverts the expression:
\[a = \dfrac{1-\cos(\theta)}{2}\]for a pair of bounds (a_min,a_max). The result belongs to the domain (0,2pi)
- Parameters:
a_min (float) – lower bound
a_max (float) – upper bound
flag (bool) – flag to keep track of weather we are in the upper or lower half pane
- Returns:
theta_min (float) – lower bound for the associated angle
theta_max (float) – upper bound for the associated angle
- iqae(epsilon: float = 0.01, shots: int = 100, alpha: float = 0.05)
This function implements Algorithm 1 from the IQAE paper. The result is an estimation of the desired probability with precision at least epsilon and accuracy at least alpha.
- Parameters:
epsilon (float) – precision
alpha (float) – accuracy
shots (int) – number of measurements on each iteration
- Returns:
a_l (float) – lower bound for the probability to be estimated
a_u (float) – upper bound for the probability to be estimated
- property oracle
creating oracle property
- quantum_step(k)
Create the quantum routine needed for the iqae step
- Parameters:
k (int) – number of Grover operator applications
- Returns:
routine – qlm routine for the iqae step
- Return type:
qlm routine
- run()
run method for the class.
- Returns:
amplitude estimation parameter
- Return type:
self.ae
- property target
creating target property
maximum_likelihood_ae
This module contains necessary functions and classes to implement Maximum Likelihood Amplitude Estimation based on the paper:
Suzuki, Y., Uno, S., Raymond, R., Tanaka, T., Onodera, T., & Yamamoto, N. Amplitude estimation without phase estimation Quantum Information Processing, 19(2), 2020 arXiv: quant-ph/1904.10246v2
Author: Gonzalo Ferro Costas & Alberto Manzano Herrero
- class tnbs.BTC_02_AE.QQuantLib.AE.maximum_likelihood_ae.MLAE(oracle: qat.lang.AQASM.QRoutine, target: list, index: list, **kwargs)
Bases:
object
Class for using Maximum Likelihood Quantum Amplitude Estimation (MLAE) algorithm
- Parameters:
oracle (QLM gate) – QLM gate with the Oracle for implementing the Grover operator: init_q_prog and q_gate will be interpreted as None
target (list of ints) – python list with the target for the amplitude estimation
index (list of ints) – qubits which mark the register to do the amplitude estimation
kwars (dictionary) –
dictionary that allows the configuration of the MLAE algorithm: Implemented keys:
- qpuQLM solver
solver for simulating the resulting circuits
- schedulelist of two lists
the schedule for the algorithm
- optimizer :
an optimizer with just one possible entry
- deltafloat
tolerance to avoid division by zero warnings
- nsint
number of grid points for brute scipy optimizer
- mcz_qlmbool
for using or not QLM implementation of the multi controlled Z gate
- static cost_function(angle: float, m_k: list, n_k: list, h_k: list) float
This method calculates the -Likelihood of angle theta for a given schedule m_k,n_k
Notes
\[L(\theta,\mathbf{h}) = -\sum_{k = 0}^M\log{l_k(\theta|h_k)}\]- Parameters:
angle (float) – Angle (radians) for calculating the probability of measure a positive event.
m_k (list of ints) – number of times the grover operator was applied.
n_k (list of ints) – number of total events measured for the specific m_k
h_k (list of ints) – number of positive events measured for each m_k
- Returns:
cost – the aggregation of the individual likelihoods
- Return type:
float
- property index
creating index property
- static likelihood(theta: float, m_k: int, n_k: int, h_k: int) float
Calculates Likelihood from Suzuki paper. For h_k positive events of n_k total events, this function calculates the probability of this taking into account that the probability of a positive event is given by theta and by m_k The idea is use this function to minimize it for this reason it gives minus Likelihood
Notes
\[l_k(\theta|h_k) = \sin^2\left((2m_k+1)\theta\right)^{h_k} \ \cos^2 \left((2m_k+1)\theta\right)^{n_k-h_k}\]- Parameters:
theta (float) – Angle (radians) for calculating the probability of measure a positive event.
m_k (int) – number of times the grover operator was applied.
n_k (int) – number of total events measured for the specific m_k
h_k (int) – number of positive events measured for each m_k
- Returns:
Gives the Likelihood p(h_k with m_k amplifications|theta)
- Return type:
float
- static log_likelihood(theta: float, m_k: int, n_k: int, h_k: int) float
Calculates log of the likelihood from Suzuki paper.
Notes
\[\log{l_k(\theta|h_k)} = 2h_k\log\big[\sin\left((2m_k+1) \ \theta\right)\big] +2(n_k-h_k)\log\big[\cos\left((2m_k+1) \ \theta\right)\big]\]- Parameters:
theta (float) – Angle (radians) for calculating the probability of measure a positive event.
m_k (int) – number of times the grover operator was applied.
n_k (int) – number of total events measured for the specific m_k
h_k (int) – number of positive events measured for each m_k
- Returns:
Gives the log Likelihood p(h_k with m_k amplifications|theta)
- Return type:
float
- mlae(schedule, optimizer)
This method executes a complete Maximum Likelihood Algorithm, including executing schedule, defining the correspondent cost function and optimizing it.
- Parameters:
schedule (list of two lists) – the schedule for the algorithm
optimizer (optimization routine.) – the optimizer should receive a function of one variable the angle to be optimized. Using lambda functions is the recommended way.
- Returns:
result (optimizer results) – the type of the result is the type of the result of the optimizer
h_k (list) – list with number of positive outcomes from quantum circuit for each pair element of the input schedule
cost_function_partial (function) – partial cost function with the m_k, n_k and h_k fixed to the obtained values of the different experiments.
- property oracle
creating oracle property
- run() float
run method for the class.
- Returns:
list with the estimation of a
- Return type:
result
Notes
\[a^* = \sin^2(\theta^*) \; where \; \theta^* = \arg \ \min_{\theta} L(\theta,\mathbf{h})\]
- run_schedule(schedule)
This method execute the run_step method for each pair of values of a given schedule.
- Parameters:
schedule (list of two lists) – the schedule for the algorithm
- Returns:
h_k – list with the h_k result of each pair of the input schedule
- Return type:
list
- run_step(m_k: int, n_k: int) int
This method executes on step of the MLAE algorithm
- Parameters:
m_k (int) – number of times to apply the self.q_gate to the quantum circuit
n_k (int) – number of shots
- Returns:
h_k (int) – number of positive events
routine (QLM Routine object)
- property schedule
creating schedule property
- set_exponential_schedule(n_t: int, n_s: int)
Creates a scheduler of exponential increasing of m_ks.
- Parameters:
n_t (int) – number of maximum applications of the grover operator
n_s (int) – number of shots for each m_k grover applications
- set_linear_schedule(n_t: int, n_s: int)
Creates a scheduler of linear increasing of m_ks.
- Parameters:
n_t (int) – number of maximum applications of the grover operator
n_s (int) – number of shots for each m_k grover applications
- property target
creating target property
montecarlo_ae
This module contains necessary functions and classes to implement a MonterCarlo Amplitude Estimation. In this case not amplification is used. The probability of the target stat of the oracle is measured.
Author: Gonzalo Ferro Costas & Alberto Manzano Herrero
- class tnbs.BTC_02_AE.QQuantLib.AE.montecarlo_ae.MCAE(oracle: qat.lang.AQASM.QRoutine, target: list, index: list, **kwargs)
Bases:
object
Class for MonteCarlo Amplitude Estimation (MCAE).
- Parameters:
oracle (QLM gate) – QLM gate with the Oracle for implementing the Grover operator
target (list of ints) – python list with the target for the amplitude estimation
index (list of ints) – qubits which mark the register to do the amplitude estimation
kwars (dictionary) –
dictionary that allows the configuration of the IQAE algorithm: Implemented keys:
- qpuQLM solver
solver for simulating the resulting circuits
- shotsint
number of measurements
- mcz_qlmbool
for using or not QLM implementation of the multi controlled Z gate
- property index
creating index property
- property oracle
creating oracle property
- run()
run method for the class.
- Returns:
amplitude estimation parameter
- Return type:
self.ae
- property target
creating target property
real_quantum_ae
This module contains necessary functions and classes to implement Real Quantum Amplitude Estimation based on the paper:
Manzano, A., Musso, D., Leitao, A. et al. Real Quantum Amplitude Estimation Preprint
Author: Gonzalo Ferro Costas & Alberto Manzano Herrero
- class tnbs.BTC_02_AE.QQuantLib.AE.real_quantum_ae.RQAE(oracle: qat.lang.AQASM.QRoutine, target: list, index: list, **kwargs)
Bases:
object
Class for Real Quantum Amplitude Estimation (RQAE) algorithm
- Parameters:
oracle (QLM gate) – QLM gate with the Oracle for implementing the Grover operator
target (list of ints) – python list with the target for the amplitude estimation
index (list of ints) – qubits which mark the register to do the amplitude estimation
kwars (dictionary) –
dictionary that allows the configuration of the IQAE algorithm: Implemented keys:
- qpuQLM solver
solver for simulating the resulting circuits
- qint
amplification ratio
- epsilonint
precision
- gammafloat
accuracy
- mcz_qlmbool
for using or not QLM implementation of the multi controlled Z gate
- static chebysev_bound(n_samples: int, gamma: float)
Computes the length of the confidence interval for a given number of samples n_samples and an accuracy gamma.
- Parameters:
n_samples (int) – number of samples
gamma (float) – accuracy
- Return type:
length of the confidence interval
- static compute_info(ratio: float = 2, epsilon: float = 0.01, gamma: float = 0.05, **kwargs)
This function computes theoretical values of the IQAE algorithm.
- Parameters:
ratio (float) – amplification ratio/policy
epsilon (float) – precision
gamma (float) – accuracy
- Returns:
info – python dictionary with the computed information
- Return type:
dict
- static display_information(ratio: float = 2, epsilon: float = 0.01, gamma: float = 0.05, **kwargs)
This function displays information of the properties of the method for a given set of parameters
- Parameters:
ratio (float) – amplification ratio/policy
epsilon (float) – precision
gamma (float) – accuracy
- first_step(shift: float, shots: int, gamma: float)
This function implements the first step of the RQAE paper. The result is a first estimation of the desired amplitude.
- Parameters:
shift (float) – shift for the first iteration
shots (int) – number of measurements
gamma (float) – accuracy
- Returns:
amplitude_min (float) – lower bound for the amplitude to be estimated
amplitude_max (float) – upper bound for the amplitude to be estimated
- property index
creating index property
- property oracle
creating oracle property
- rqae(ratio: float = 2, epsilon: float = 0.01, gamma: float = 0.05)
This function implements the first step of the RQAE paper. The result is an estimation of the desired amplitude with precision epsilon and accuracy gamma.
- Parameters:
ratio (int) – amplification ratio
epsilon (int) – precision
gamma (float) – accuracy
- Returns:
amplitude_min (float) – lower bound for the amplitude to be estimated
amplitude_max (float) – upper bound for the amplitude to be estimated
- run()
run method for the class.
- Returns:
amplitude estimation parameter
- Return type:
self.ae
- run_step(shift: float, shots: int, gamma: float, k: int)
This function implements a step of the RQAE paper. The result is a refined estimation of the desired amplitude.
- Parameters:
shift (float) – shift for the first iteration
shots (int) – number of measurements
gamma (float) – accuracy
k (int) – number of amplifications
- Returns:
amplitude_min (float) – lower bound for the amplitude to be estimated
amplitude_max (float) – upper bound for the amplitude to be estimated
- property shifted_oracle
creating shifted_oracle property
- property target
creating target property