QPE.qpe_rz
Class for executing QPE on a R_z^n operator
Author: Gonzalo Ferro
- class tnbs.BTC_03_QPE.QPE.qpe_rz.QPE_RZ(**kwargs)
Bases:
object
Probability Loading
- exe()
Execution of workflow
- get_metrics()
Computing Metrics
- quantum_distribution()
Computes the quantum distribution of Rz eigenvalues
- summary()
Pandas summary
- theoretical_distribution()
Computes the theoretical distribution of Rz eigenvalues
- tnbs.BTC_03_QPE.QPE.qpe_rz.save(save, save_name, input_pdf, save_mode)
For saving panda DataFrames to csvs
- Parameters:
save (bool) – For saving or not
save_nam (str) – name for file
input_pdf (pandas DataFrame)
save_mode (str) – saving mode: overwrite (w) or append (a)
QPE.rz_lib
All mandatory functions for executing theoretical and atos qlm simulation for computing eigenvalues of a R_z^n operator
Author: Gonzalo Ferro
- tnbs.BTC_03_QPE.QPE.rz_lib.bitfield(n_int: int, size: int)
Transforms an int n_int to the corresponding bitfield of size size
- Parameters:
n_int (int) – integer from which we want to obtain the bitfield
size (int) – size of the bitfield
- Returns:
full – bitfield representation of n_int with size size
- Return type:
list of ints
- tnbs.BTC_03_QPE.QPE.rz_lib.computing_shots(pdf, minimum_shots=1000)
Compute the number of shots. The main idea is that the samples for the lowest degeneracy eigenvalues will be enough. In this case enough is that that we measured an eigenvalue that will have an error from respect to the theoretical one lower than the discretization precision at least 100 times
- Parameters:
pdf (pandas DataFrame) – DataFrame with the theoretical eigenvalues
- Returns:
shots – number of shots for QPE algorithm
- Return type:
int
- tnbs.BTC_03_QPE.QPE.rz_lib.make_histogram(eigenvalues, discretization)
Given an input list of eigenvalues compute the correspondent histogram using a bins = 2^discretization
- Parameters:
eigenvalues (list) – List with the eigenvalues
discretization (int) – Histogram discretization parameter: The number of bins for the histogram will be: 2^discretization
- Returns:
pdf – Pandas Dataframe with the 2^m bin frequency histogram for the input list of eigenvalues. Columns * lambda : bin discretization for eigenvalues based on the discretization input * Probability: probability of finding any eigenvalue inside of the correspoondent lambda bin
- Return type:
pandas DataFrame
- tnbs.BTC_03_QPE.QPE.rz_lib.qpe_rz_qlm(angles, auxiliar_qbits_number, shots=0, qpu=None)
Computes the Quantum Phase Estimation for a Rz Kronecker product
- Parameters:
angles (list) – list with the angles that are applied to each qubit of the circuit
auxiliar_qbits_number (int) – number of auxiliary qubits for doing QPE
shots (int) – number of shots for getting the results. 0 for exact solution
qpu (Atos QLM QPU object) – QLM QPU for solving the circuit
- Returns:
results (pandas DataFrame) – pandas DataFrame with the distribution of the eigenvalues with a bin discretization of 2^auxiliar_qbits_number * lambda : bin discretization for eigenvalues based on the discretization input (auxiliar_qbits_number input) * Probability: probability of finding any eigenvalue inside of the correspoondent lambda bin
qft_pe (CQPE object)
- tnbs.BTC_03_QPE.QPE.rz_lib.rz_angles(thetas)
Creates a QLM abstract Gate with a R_z^n operator of an input array of angles
- Parameters:
thetas (array) – Array with the angles of the R_z^n operator
- Returns:
r_z_n – AbstractGate with the implementation of R_z_^n of the input angles
- Return type:
QLM AbstractGate
- tnbs.BTC_03_QPE.QPE.rz_lib.rz_eigenv_from_state(state, angles)
For a fixed input state and the angles of the R_z^n operator compute the correspondent eigenvalue.
- Parameters:
state (np.array) – Array with the binary representation of the input state
angles (np.array) – Array with the angles for the R_z^n operator.
- Returns:
lambda_ – The eigenvalue for the input state of the R_z^n operator with the input angles
- Return type:
float
- tnbs.BTC_03_QPE.QPE.rz_lib.rz_eigv(angles)
Computes the complete list of eigenvalues for a R_z^n operator for an input list of angles Provides the histogram between [0,1] with a bin of 2**discretization for the distribution of eigenvalues of a R_z^n operator for a given list of angles.
- Parameters:
angles (np.array) – Array with the angles for the R_z^n operator.
- Returns:
pdf – DataFrame with all the eigenvalues of the R_z^n operator for the input list angles. Columns * States : Eigenstates of the Rz^n operator (least significant bit is leftmost) * Int_lsb_left : Integer conversion of the state (leftmost lsb) * Int_lsb_rightt : Integer conversion of the state (rightmost lsb) * Eigenvalues : correspondent eigenvalue
- Return type:
pandas DataFrame
QPE.rz_qlm
Author: Gonzal Ferro
- tnbs.BTC_03_QPE.QPE.rz_qlm.qpe_rz_qlm(angles, auxiliar_qbits_number, shots=0, qpu=None)
Computes the Quantum Phase Estimation for a Rz Kroneckr product
- Parameters:
angles (list) – list with the angles that are applied to each qubit of the circuit
auxiliar_qbits_number (int) – number of auxiliar qubits for doing QPE
shots (int) – number of shots for gettiong the results. 0 for exact solution
qpu (Atos QLM QPU object) – QLM QPU for solving the circuit
- Returns:
results (pandas DataFrame) – pandas DataFrame with the distribution of the eigenvalues with a bin discretization of 2^auxiliar_qbits_number * lambda : bin discretization for eigenvalues based on the discretization input (auxiliar_qbits_number input) * Probability: probability of finding any eigenvalue inside of the correspoondent lambda bin
qft_pe (CQPE object)
- tnbs.BTC_03_QPE.QPE.rz_qlm.rz_angles(thetas)
Creates a QLM abstract Gate with a R_z^n operator of an input array of angles
- Parameters:
thetas (array) – Array with the angles of the R_z^n operator
- Returns:
r_z_n – AbstractGate with the implementation of R_z_^n of the input angles
- Return type:
QLM AbstractGate
QPE.qpe
Mandatory functions for performing classical QPE Author: Gonzal Ferro
- class tnbs.BTC_03_QPE.QPE.qpe.CQPE(**kwargs)
Bases:
object
Class for using classical Quantum Phase Estimation, with inverse of Quantum Fourier Transformation.
- Parameters:
kwars (dictionary) –
dictionary that allows the configuration of the CQPE algorithm: Implemented keys:
- initial_stateQLM Program
QLM Program with the initial Psi state over the Grover-like operator will be applied Only used if oracle is None
- unitary_operatorQLM gate or routine
Grover-like operator which autovalues want to be calculated Only used if oracle is None
- cbits_numberint
number of classical bits for phase estimation
- qpuQLM solver
solver for simulating the resulting circuits
- shotsint
number of shots for quantum job. If 0 exact probabilities will be computed.
- run()
Creates the quantum phase estimation routine
- tnbs.BTC_03_QPE.QPE.qpe.check_list_type(x_input, tipo)
Check if a list x_input is of type tipo :param x_input: :type x_input: list :param tipo: it has to be understandable by numpy :type tipo: data type
- Returns:
y_output – numpy array of type tipo.
- Return type:
np.array
- tnbs.BTC_03_QPE.QPE.qpe.create_qcircuit(prog_q)
Given a QLM program creates a QLM circuit
- Parameters:
prog_q (QLM QProgram)
- Returns:
circuit
- Return type:
QLM circuit
- tnbs.BTC_03_QPE.QPE.qpe.create_qjob(circuit, shots=0, qubits=None)
Given a QLM circuit creates a QLM job
- Parameters:
circuit (QLM circuit)
shots (int) – number of measurmentes
qubits (list) – with the qubits to be measured
- Returns:
job – job for submit to QLM QPU
- Return type:
QLM job
- tnbs.BTC_03_QPE.QPE.qpe.create_qprogram(quantum_gate)
Creates a Quantum Program from an input qlm gate or routine
- Parameters:
quantum_gate (QLM gate or QLM routine)
- Returns:
q_prog – Quantum Program from input QLM gate or routine
- Return type:
QLM Program.
- tnbs.BTC_03_QPE.QPE.qpe.get_results(quantum_object, linalg_qpu, shots: int = 0, qubits: list = None, complete: bool = False)
Function for testing an input gate. This function creates the quantum program for an input gate, the correspondent circuit and job. Execute the job and gets the results
- Parameters:
quantum_object (QLM Gate, Routine or Program)
linalg_qpu (QLM solver)
shots (int) – number of shots for the generated job. if 0 True probabilities will be computed
qubits (list) – list with the qubits for doing the measurement when simulating if None measurement over all allocated qubits will be provided
complete (bool) – for return the complete basis state. Useful when shots is not 0 and all the posible basis states are necessary.
- Returns:
pdf (pandas DataFrame) – DataFrame with the results of the simulation
circuit (QLM circuit)
q_prog (QLM Program.)
job (QLM job)
- tnbs.BTC_03_QPE.QPE.qpe.load_qn_gate(qlm_gate, n_times)
Create an AbstractGate by applying an input gate n times
- Parameters:
qlm_gate (QLM gate) – QLM gate that will be applied n times
n_times (int) – number of times the qlm_gate will be applied
- tnbs.BTC_03_QPE.QPE.qpe.proccess_qresults(result, qubits, complete=False)
Post Process a QLM results for creating a pandas DataFrame
- Parameters:
result (QLM results from a QLM qpu.) – returned object from a qpu submit
qubits (int) – number of qubits
complete (bool) – for return the complete basis state.