adam
” Adam
- QQuantLib.qml4var.adam.adam_optimizer_loop(weights_dict, loss_function, metric_function, gradient_function, batch_generator, initial_time=0, **kwargs)
- Parameters:
weights_dict (dict) – dictionary with the weights to fit
loss_function (function) – function for computing the loss function
metric_function (fuction) – function for computing the metric function
gradient_function (function) – function for computing the gradient of the loss function
batch_generator (function) – function for generating batches of the trainin data.
initial_time (int) – Initial time step
kwargs (keyword arguments) – arguments for configuring optimizer. For ADAM:
store_folder (kwargs, str) – Folder for saving results. If None not saving
epochs (kwargs, int) – Maximum number of iterations
tolerance (kwargs, float) – Tolerance to achieve
n_counts_tolerance (kwargs, int) – Number of times the tolerance should be achieved in consecutive iterations
print_step (kwargs, int) – Print_step for printing evolution of training
learning_rate (kwargs,float) – Learning_rate for ADAM
beta1 (kwargs, float) – beta1 for ADAM
beta2 (kwargs, float) – beta2 for ADAM
- QQuantLib.qml4var.adam.initialize_adam(parameters)
Initialize the parameters of ADAM
- QQuantLib.qml4var.adam.save_stuff(weights, weights_names, t_, loss_, metric_mse_=None, file_to_save=None)
Save stuff
- QQuantLib.qml4var.adam.update_parameters_with_adam(x, grads, s, v, t, learning_rate=0.01, beta1=0.9, beta2=0.999, epsilon=1e-08)
Update the parameters of ADAM