architectures
Architectures and Architecture class definition
- QQuantLib.qml4var.architectures.compute_gradient(batch, parameters)
Compile method of the plugin.
- Parameters:
batch (QLM Batch) – QLM batch with the Jobs to execute
parameters (list) – list with the name of the parameters for gradient computations
- Returns:
batch_ – QLM Batch with the jobs for computing graidents
- Return type:
QLM Batch
- QQuantLib.qml4var.architectures.compute_pdf_from_pqc(batch, parameters)
Given a QLM Batch with a PQC representing a Multivariate Cumulative Distribution Function (cdf) creates all the mandatory PQCs for computing the corresponding Probability Distribution Function, pdf. The returned is a QLM Batch with the jobs mandatory for computing the pdf
- Parameters:
batch (QLM Batch) – QLM batch with the Jobs to execute
parameters (list) – list with the name of the features for pdf computation
- Returns:
batch_ – QLM Batch with the jobs for pdf copmputation
- Return type:
QLM Batch
- QQuantLib.qml4var.architectures.hardware_efficient_ansatz(**kwargs)
Create a hardware efficient ansatz.
- Parameters:
kwargs (kwargs) – Input dictionary for configuring the ansatz. Mandatory keys:
features_number (kwargs, int) – Number of features
n_qubits_by_feature (kwargs, int) – Number of qubits used for each feature
n_layers (kwargs, int) – Number of layers of the PQC
base_frecuency (kwargs, float) – Slope for feature normalization
shift_feature (kwargs, float) – Shift for feature normalization
- Returns:
pqc (QLM Program) – QLM Program with the ansatz
weights_names (list) – list with the parameters corrresponding to the weights
features_names (list) – list with the parameters corrresponding to the features
- QQuantLib.qml4var.architectures.init_weights(weigths_names)
init weights of the PQC
- QQuantLib.qml4var.architectures.normalize_data(min_value, max_value, min_x=None, max_x=None)
Feature Normalization. :param min_value: list with the minimum value for all the features :type min_value: list :param max_value: list with the maximum value for all the features :type max_value: list :param min_x: minimum value for encoding the feature in a rotation :type min_x: list :param max_x: maximum value for encoding the feature in a rotation :type max_x: list
- Returns:
slope (np array) – with the slope for normalization of the features
b0 (np array) – with shift for normalization of the features
- QQuantLib.qml4var.architectures.z_observable(**kwargs)
Create an Observable.
- Parameters:
kwargs (kwargs) – Input dictionary for configuring the ansatz
features_number (kwargs, int) – Number of input features
n_qubits_by_feature (kwargs, int) – Number of qubits for encoding each feature
- Returns:
observable – QLM Observable
- Return type:
QLM Observable